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SUITABILITY OF CARTESIAN GRIDS FOR COMPLEX FLOW ANALYSIS 

Christen Yuanhui Li1,  Tony C. Min2,  Steven Hsin-Yi Lai3 

North Carolina Agricultural and Technical State University 

Greensboro, North Carolina 27411 

and 

Francis X. Hurley4 

United States Army Research Office 

Research Triangle Park, North Carolina 27709-2211 

Introduction 

Desirable aspects of a cartesian/cubic coordinate system approach to 

computational fluid dynamics include its generality, its much reduced claim on the 

investigator's attention, and its apparent compatibility with CAD (loft) geometry 

data. Recent noteworthy analyses are presented in Refs. [1] and [2], and in fact nine 

of the roughly 120 papers presented at that AIAA specialists' conference, Ref. [3], 

discuss cartesian grids applied to non-square bodies, fields, or flow structures. 

A literature search shows that cartesian coordinate systems never exited the CFD 

repertory (though greatly outnumbered by body-fitted systems). In fact, varied 

problems and speed regimes were so handled through the late 1980s by e.g. American, 

German, Israeli, Swedish, and Australian investigators in Refs. [4], [5], [6], [7], 

and [8]. It is conceded that grids aligned with body and flow contours can carry out 

CFD more efficiently than cartesian grids, but this may become less important in a 

progressively more bullish computing environment. A relatively unsophisticated 
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cartesian CFD routine might be able to handle rather arbitrary body geometries and 

flow features. 

The present study was initiated to enable substantially equal-basis comparisons 

of these two approaches. (Clearly, unstructured triangular or tetrahedral grids offer 

yet a third alternative.) 

Analysis and Comparison 

I. Error Source Contributions 

It is presumed that a body-fitted grid not only approximates streamline patterns 

but is tailored to accurately cover high gradients within boundary layers as well. 

It is presumed that a cartesian grid achieves general applicability through a crude, 

successive halving maneuver to cover high gradients wherever they occur, as in Ref. 

[9]- i 

Since a cartesian system is not aligned with the flow, it has the potential over 

a stream distance As to miss the fluxes within a streamtube of width An by the order 

of 2Ay/An. But since it relies on close-packing of points, and cells have an aspect 

ratio Ay/Ax=l, the cartesian system does not miss streamline curvature changes as a 

streamwise-sparse body-fitted system is like to do. The latter error is characterized 

by A8=As/R, which certainly can be significant; e.g. at a Mach number of 3 a Prandtl- 

Meyer expansion of just 5 degrees causes static pressure to drop to 2/3 of its initial 

levelu Comparing these, it can be said that the larger-cell, body-aligned coordinate 

system is not doing importantly better than the smaller-cell, cartesian system unless 

As/k/2Ay7An«l, i.e. unless Ay»AnAs/2R, which will not be the case if Ay is 

small enough (fine grid) or if R is small enough (flow turns). 



A cartesian system misses body surfaces (just as it misses stream surfaces), 

and so tends to misapply boundary conditions, unless an interpolation is used. 

Fortunately, such interpolation schemes are well known, being based upon simple Taylor 

expansions of the dependent variables about the boundary coordinate. Writing the 

expansion for successively distant points enables algebraic elimination of the 

successive derivatives and the establishing of a boundary condition of successively 

higher order in Ay. 

A cartesian system with continued halving more crudely covers the boundary layer 

regions than a designed system. The latter, ideally, can grid a U/U=(y/6) ' power 

law with 10 equal increments in u/U by using coordinate spacing (y/6) ^= (i/10) 

For a successive halving mechanism to achieve the same 10 spacing at the bottom of 

the boundary layer while extending out to y/ö=l, the required number of halvings 

would be given by 10~72N=1, or N=23, which is not excessive compared with 10. So, 

repealed halving can capture rapidly varying gradients. 

2.  Numerical Experiments 

Comparitive two-dimensional Navier-Stokes calculations were carried out for 

subsonic, compressible flow about an NACA 0012 airfoil, using MacCormack's time- 

stepping predictor-corrector method, as described e.g. in Refs. [10] and [11]: 

OQ /ut     =   R (second spatial derivatives) 

•A composite van Driest turbulence model as modified and described in Ref. [12] 

was employed. In the cartesian runs, only a lowest order boundary condition 

interpolation was used, resulting in an effective steppiness in the airfoil contour 

and in the resultant static pressure distributions, unless an optional smoothing 

routine was applied. 



The body-fitted grids were generated per the methodology of Ref. [13]. The 

cartesian grids were designed with high point density bands to ensure sufficient 

coverage of boundary layers, wakes, and leading and trailing edges. No self- 

adjustment mechanisms were included in these test cases. Typical grids are shown in 

Fig. 1. 

With essentially the same solver applied to both the body-fitted and cartesian 

systems, comparisons of machine time for equivalent solution accuracy reflect (1) the 

inefficiency of cartesian grid point distribution vs. (2) the cost of multiplying 

coordinate stretching factors in body-fitted grid calculations. The selected residual 

for convergence tracking was ÖQU/3t. 

Using the grids shown in Fig. 1, flow fields about an NACA 0012 airfoil at zero 

incidence were calculated. The purpose was to gauge computational efforts to attain 

comparably accurate results (rather than to strive for maximum accuracy). Measured 

pressure distribution data was available from Ref. [14], with chosen flow conditions 

being M = 0.3 and Re = 1.85x10*. Equivalent overall error levels were achieved, with 

the cartesian grid giving better comparison with experiment at forward chord locations 

and worse comparison rearward, probably indicative of accumulating error in the 

boundary layer due to the low order of interpolation. 

As shown, the ratio of cartesian grid points to body-fitted grid points in these 

representative calculations was 272x145/121x45=7.24. The corresponding ratio of time 

steps: required for the converged solutions was 3501/1800=1.94, the ratio of CPU per 

step was 0.929/0.600=1.55, and the ratio of total processing times was therefore 

1.94x1.55=3.01. That is, use of the relatively inelegant cartesian system, with its 

relative profusion of grid points, tripled the claim on computing machine resources. 

Further details, and calculations for other cases, are available in Ref. [15]. 



Conclusion 

Substantially equal basis comparisons between body-fitted grid and cartesian 

grid CFD calculations indicate that the latter require less than an order of magnitude 

more machine time to achieve equivalent results. Fully general, fully automated 

cartesian/cubic programs should be developed as one approach to complex-geometry flow 

problems. 
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Figure Captions 

Fig. 1     Grid systems utilized in NACA 0012 Navier-Stokes flow field 

calculations 

(a) body-fitted 121x45 

(b) cartesian 272x145 
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